Affiliation:
1. Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada.
Abstract
Campylobacter jejuni is one of the major causes of food poisoning, often resulting from the consumption of improperly cooked poultry products. The emergence of C. jejuni strains resistant to conventional antibiotics necessitates the evaluation of other possible treatments or preventative measures to minimize the impact and prevalence of infections. Antimicrobial peptides produced by bacteria have begun to emerge as a potential means of decreasing the levels of C. jejuni in poultry, thereby limiting Campylobacter contamination in associated food products. A number of bacteriocins produced by Gram-positive bacteria have unexpectedly been described as having antimicrobial activity against the Gram-negative C. jejuni. Additionally, some nonribosomal lipopeptides produced by Bacillus and Paenibacillus spp. show efficacy against this pathogen. This review will describe the bacterial antimicrobial peptides reported to be active against C. jejuni, with an emphasis on the characterization of their primary structures. However, for many of these peptides, little is known about their amino acid sequences and structures. Furthermore, there are unusual inconsistencies associated with the reported amino acid sequences for several of the more well-studied bacteriocins. Clarifying the chemical nature of these promising antimicrobial peptides is necessary before their potential utility for livestock protection from C. jejuni can be fully explored. Once these peptides are better characterized, they may prove to be strong candidates for minimizing the impact of Campylobacter on human health.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献