Insulin-related material in microbes: similarities and differences from mammalian insulins

Author:

Leroith Derek,Shiloach Joseph,Heffron Robert,Rubinovitz Chaim,Tanenbaum Robert,Roth Jesse

Abstract

We have reported that extracts of Escherichia coli and Tetrahymena grown in synthetic media contained material that reacted specifically in the immunoassay and bioassay for insulin. One additional strain of Tetrahymena and four of E. coli yielded amounts of material similar to those reported previously. In addition to their behavior on Sephadex G-50, the immunoactive insulin-related materials from the microbial sources behaved like authentic vertebrate insulins in their ability to be adsorbed to and eluted from disposable octadecasilylsilica cartridges, DEAE-Sephadex, DEAE-cellulose, and one system of high-pressure liquid chromatography (HPLC). As with less purified microbial material, the "insulin" that had been purified on DEAE and HPLC, when tested for its bioactivity, had an immunoactivity:bioactivity ratio of approximately unity and the bioactivity was largely neutralized by anti-insulin antibody. Because the material from the microbes was so similar to authentic insulins, studies were undertaken to demonstrate that inadvertent contamination with vertebrate insulins was highly unlikely. Blanks carried through the entire procedure were always negative. Tetrahymena grown and extracted in another laboratory gave the same results. Tetrahymena that had been grown but then allowed to stand in the fermenter under adverse conditions and then carried through the entire procedure were devoid of insulin. Tetrahymena that were homogenized and subjected to acid hydrolysis were devoid of insulin. Further substantiation that exogenous contamination was highly unlikely was provided by two other types of experiments. In one of these, it was shown that the subcellular distribution of exogenously added porcine insulin or porcine 125I-labeled insulin was different from the distribution of endogenous insulin. In the second type of experiment, it was shown that during the log phase of growth of Tetrahymena or of E. coli the insulin content of the system increased multifold in a fashion that might be expected for living organisms but quite unexpected for exogenous contamination. (Interestingly, the insulin content of the E. coli medium far exceeded that which might be contributed by death of cells, estimated by the content in the medium of an intracellular enzyme.) When E. coli was grown and processed in four other laboratories having no contact with our own, similar levels of insulin-related material were recovered.

Publisher

Canadian Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3