Affiliation:
1. Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
2. Department of Chemistry, American University, Washington, DC 20016, USA
Abstract
During the management of patients in acute trauma the resulting transient hyperglycemia is treated by administration of insulin. Since the effect of insulin, a quorum sensing compound, together with glucose affects biofilm formation in a concentration-specific manner, we hypothesize that the insulin/glucose ratio over the physiologic range modulates biofilm formation potentially influencing the establishment of infection through biofilm formation. Methods: A variety of Gram-positive and Gram-negative bacteria were grown in peptone (1%) yeast nitrogen base broth overnight in 96-well plates with various concentrations of glucose and insulin. Biofilm formation was determined by the crystal violet staining procedure. Expression of insulin binding was determined by fluorescent microscopy (FITC-insulin). Controls were buffer alone, insulin alone, and glucose alone. Results: Overall, maximal biofilm levels were measured at 220 mg/dL of glucose, regardless of insulin concentration (10, 100, 200 µU/mL) of the organism tested. In general, insulin with glucose over the range of 160–180 mg/dL exhibited a pattern of biofilm suppression. However, either above or below this range, the presence of insulin in combination with glucose significantly modulated (increase or decrease) biofilm formation in a microbe-specific pattern. This modulation appears for some organisms to be reflective of the glucose-regulated intrinsic expression of bacterial insulin receptor expression. Conclusion: Insulin at physiologic levels (normal and hyperinsulinemic) in combination with glucose can affect biofilm formation in a concentration-specific and microbe-specific manner. These findings may provide insight into the importance of co-regulation of the insulin/glucose ratio in patient management.
Funder
Midwestern University Office of Research and Sponsored Programs
Chicago College of Osteopathic Medicine
MWU College of Graduate Studies
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology