Effects of needleleaf forest cover on radiation and snowmelt dynamics in the Canadian Rocky Mountains

Author:

Ellis C. R.123,Pomeroy J. W.123,Essery R. L.H.123,Link T. E.123

Affiliation:

1. Centre for Hydrology, Department of Geography, University of Saskatchewan, 117 Science Place, SK S7N 5C8, Canada.

2. School of Geosciences Grant Institute, University of Edinburgh, Edinburgh, EH9 3JW, UK.

3. Department of Forest Resources, University of Idaho, P.O. Box 441133, Moscow, ID 83844-1133, USA.

Abstract

Radiation is the main energy source for snowpack warming and melt in mountain needleleaf forests, and runoff from these forests is the main contributor to spring river flows in western North America. Utilizing extensive field observations, the effect of needleleaf forest cover on radiation and snowmelt timing was quantified at pine and spruce forest sites and nearby clearings of varying slope and aspect in an eastern Canadian Rocky Mountain headwater basin. Compared with open clearing sites, shortwave radiation was much reduced under forest cover, resulting in smaller differences in melt timing between forested slopes relative to open slopes with different aspects. In contrast, longwave radiation to snow was substantially enhanced under forest cover, especially at the dense spruce forest sites where longwave radiation dominated total energy for snowmelt. In both pine and spruce environments, forest cover acted to substantially reduce total radiation to snow and delay snowmelt timing on south-facing slopes while increasing total radiation and advancing snowmelt timing on north-facing slopes. Results strongly suggest that impacts on radiation to snow and snowmelt timing from changes in mountain forest cover will depend much on the slope and aspect at which changes occur.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3