Affiliation:
1. Department of Cardiology, Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
2. Anesthesiology Research Laboratory, Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, China.
3. State Key Laboratory of Ophthalmology and Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
4. Department of Anesthesiology, University of Hong Kong, Hong Kong, China.
Abstract
Oxidative stress may play a causative role in myocardial ischemia–reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia–reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 °C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 μL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 μL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 ± 20, 43 ± 6, and 95 ± 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 ± 4, 46 ± 4, and 60 ± 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% ± 2%, 22% ± 2%, and 20% ± 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology