High-Density Lipoproteins Protect Isolated Rat Hearts From Ischemia-Reperfusion Injury by Reducing Cardiac Tumor Necrosis Factor-α Content and Enhancing Prostaglandin Release

Author:

Calabresi Laura1,Rossoni Giuseppe1,Gomaraschi Monica1,Sisto Francesca1,Berti Ferruccio1,Franceschini Guido1

Affiliation:

1. From the Center E. Grossi Paoletti, Department of Pharmacological Sciences (L.C., M.G., G.F.), the Department of Pharmacological Sciences (G.R.), the Institute of Microbiology (F.S.), University of Milano, and the Department of Experimental and Environmental Medicine and Medical Biotechnology (F.B.), University of Milano-Bicocca, Monza, Italy.

Abstract

The incidence and severity of primary cardiac events are inversely related to the plasma concentration of high-density lipoproteins (HDLs). We investigated whether HDLs may exert a direct cardioprotection in buffer-perfused isolated rat hearts, which underwent a 20-minute low-flow ischemia followed by a 30-minute reperfusion. The administration of HDLs at physiological concentrations (0.5 and 1.0 mg/mL) during the 10 minutes immediately before ischemia rapidly and remarkably improved postischemic functional recovery and decreased creatine kinase release in the coronary effluent. Reconstituted HDLs containing apolipoprotein A-I (apoA-I) and phosphatidylcholine, but not lipid-free apoA-I or phosphatidylcholine liposomes, were also effective in protecting the heart from ischemia-reperfusion injury. HDLs at reperfusion were less effective than when given before ischemia. HDLs caused a dose-dependent reduction of ischemia-induced cardiac tumor necrosis factor-α (TNF-α) expression and content, which correlated with the improved functional recovery. A parallel increase of TNF-α release in the coronary effluent was observed, due to a direct binding of cardiac TNF-α to HDLs. Taken together, these findings argue for a cause-effect relationship between the HDL-mediated removal of TNF-α from the ischemic myocardium and the HDL-induced cardioprotection. Indeed, etanercept, a recombinant TNF-α–blocking protein, caused a dose-dependent improvement of postischemic functional recovery. HDLs also enhanced ischemia-induced prostaglandin release, which may contribute to the cardioprotective effect. A low plasma HDL level may expose the heart to excessive ischemia-reperfusion damage, and HDL-targeted therapies may be helpful to induce immediate or delayed myocardial protection from ischemia-reperfusion injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3