Author:
Baker William L,Ehle Donna
Abstract
Present understanding of fire ecology in forests subject to surface fires is based on fire-scar evidence. We present theory and empirical results that suggest that fire-history data have uncertainties and biases when used to estimate the population mean fire interval (FI) or other parameters of the fire regime. First, the population mean FI is difficult to estimate precisely because of unrecorded fires and can only be shown to lie in a broad range. Second, the interval between tree origin and first fire scar estimates a real fire-free interval that warrants inclusion in mean-FI calculations. Finally, inadequate sampling and targeting of multiple-scarred trees and high scar densities bias mean FIs toward shorter intervals. In ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the western United States, these uncertainties and biases suggest that reported mean FIs of 2-25 years significantly underestimate population mean FIs, which instead may be between 22 and 308 years. We suggest that uncertainty be explicitly stated in fire-history results by bracketing the range of possible population mean FIs. Research and improved methods may narrow the range, but there is no statistical or other method that can eliminate all uncertainty. Longer mean FIs in ponderosa pine forests suggest that (i) surface fire is still important, but less so in maintaining forest structure, and (ii) some dense patches of trees may have occurred in the pre-Euro-American landscape. Creation of low-density forest structure across all parts of ponderosa pine landscapes, particularly in valuable parks and reserves, is not supported by these results.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献