Projections of wildfire risk and activities under 1.5 °C and 2.0 °C global warming scenarios

Author:

Peng XiaobinORCID,Yu MiaoORCID,Chen HaishanORCID,Zhou BotaoORCID,Shi Ying,Yu Li

Abstract

Abstract Wildfires are important ecosystem processes that have a significant impact on terrestrial vegetation, environment, and climate. This study investigates how future wildfire risk and activities could change under 1.5 °C and 2.0 °C warming scenarios relative to pre-industrial levels using a modified McArthur Forest Fire Danger Index (FFDIn) and the CLM4.5-BGC land surface model. Sixteen Earth System Models (ESMs) from CMIP5 and CMIP6 were employed to supply the variables of climate change under low, middle, and high greenhouse emission scenarios in the 1.5 °C and 2.0 °C scenarios. The ensemble means from the FFDIn and results from the CLM4.5-BGC with multiple forcings show that the dry areas in the southwestern US, Brazilian Highlands, and Arabian islands are projected to face higher wildfire risk with larger burned areas and more carbon emissions under a warmer climate. The Congo Basin and part of the Amazon could have a lower wildfire risk with smaller burned areas and less carbon emissions. The absolute changes in the projected FFDIn are small, although large increases are observed in boreal areas, particularly in the winter and spring. Burned area and carbon emissions are projected to increase in general in the boreal area but decrease in northeastern Asia. Compared to the 1.5 °C scenario, the wildfire risk and burned area levels are projected to increase under the 2.0 °C scenario except in the western Amazon. However, fire carbon emissions are projected to decrease more in tropical areas under the 2.0 °C scenario. The different change directions in eastern North America and eastern China produced by the FFDIn and CLM4.5-BGC suggest the potential effect of non-meteorological elements on fire activities.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Reference90 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3