Tissue-specific patterns of synthesis of heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas)

Author:

Dyer Scott D.,Dickson Kenneth L.,Zimmerman Earl G.,Sanders Brenda M.

Abstract

Qualitative and quantitative differences in the heat-shock response in brain, gill, and striated muscle tissues of the fathead minnow (Pimephales promelas) were investigated. The maximum sublethal heat-shock temperature was 34 °C. The heat-shock proteins (hsps) induced, their biosynthetic rates, minimum temperatures required for induction, and maximum temperatures at which each tissue synthesized hsps were tissue specific. Six hsps were induced in gill tissue (100, 90, 78, 70, 68, and 60 kDa), four in muscle tissue (100, 90, 78, and 70 kDa), and three in brain tissue (90, 70, and 68 kDa). Minimum temperatures required for inducing the stress response in gill, muscle, and brain were 28, 31, and 32 °C, respectively. Maximum hsp synthesis and accumulation occurred at 33 °C for the brain and 34°C for muscle and gill. Synthesis and accumulation of hsps decreased to near pre-exposure levels in the brain at 34 °C. The fact that brain tissue synthesized the fewest hsps and had the lowest capacity for synthesis at the upper thermal limits of the organism supports the hypothesis that the central nervous system governs the thermal limits to survival in poikilotherms.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3