Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae)

Author:

Hausmann Axel1,Miller Scott E.2,Holloway Jeremy D.3,deWaard Jeremy R.4,Pollock David2,Prosser Sean W.J.4,Hebert Paul D.N.4

Affiliation:

1. Staatliche Naturwissenschaftliche Sammlungen Bayerns – Zoologische Staatssammlung München, Münchhausenstr. 21, D-81247 Munich, Germany.

2. National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA.

3. Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.

4. Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada.

Abstract

It is essential that any DNA barcode reference library be based upon correctly identified specimens. The Barcode of Life Data Systems (BOLD) requires information such as images, geo-referencing, and details on the museum holding the voucher specimen for each barcode record to aid recognition of potential misidentifications. Nevertheless, there are misidentifications and incomplete identifications (e.g., to a genus or family) on BOLD, mainly for species from tropical regions. Unfortunately, experts are often unavailable to correct taxonomic assignments due to time constraints and the lack of specialists for many groups and regions. However, considerable progress could be made if barcode records were available for all type specimens. As a result of recent improvements in analytical protocols, it is now possible to recover barcode sequences from museum specimens that date to the start of taxonomic work in the 18th century. The present study discusses success in the recovery of DNA barcode sequences from 2805 type specimens of geometrid moths which represent 1965 species, corresponding to about 9% of the 23 000 described species in this family worldwide and including 1875 taxa represented by name-bearing types. Sequencing success was high (73% of specimens), even for specimens that were more than a century old. Several case studies are discussed to show the efficiency, reliability, and sustainability of this approach.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3