Abstract
Plant growth and nutrient uptake response to increased fertilization can be conceptually described by cur vi linear relationships depicting phases of nutrient deficiency, sufficiency, luxury consumption, and toxicity to rationalize fertilizer prescriptions and improve nutrient diagnosis. We validated this model to determine optimum nitrogen storage of young black spruce (Picea mariana (Mill.) BSP). Container seedlings were supplied with a mixed nitrogenphosphoruspotassium (NPK) fertilizer at rates ranging from 0 to 80 mg N/seedling and reared in a greenhouse for one growing season. Plant growth and nutritional parameters of the plants exhibited classic responses of N deficiency, luxury consumption, and toxicity that were corroborated by vector diagnosis and appeared consistent with the conceptual model. Seedling biomass production was maximized at sufficiency (30 mg N/seedling), whereas N content of tissues peaked at the optimum loading rate (64 mg N/seedling). Toxicity occurred at the 80 mg N/seedling dose rate that increased plant N concentration (5%) but reduced growth (17%) and N content (14%) relative to the optimum level. Plant N content was raised 150% by optimum loading, exemplifying the effectiveness of this practice for building internal N reserves prior to planting. The newly validated model will help refine fertilizer recommendations and nutrient diagnosis for other species or cultural systems.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献