Light Quality Effect on Internal N Retranslocation in Podocarpus macrophyllus Precultured with Exponential Nutrient Loading

Author:

Wang Yige1ORCID,Sun Xiangyang1,Li Suyan1

Affiliation:

1. Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

Abstract

Streetlamp light is inevitable in the night landscape of a city and may affect the phenology of newly planted ornamental plants, but it has rarely been fully examined. Newly transplanted ornamental plants probably suffer periodic shocks, which mainly result from the inefficient reuse of internal nutrients for new growth. Exponential nutrient loading (ENL) is well known for its ability to overcome transplant shocks by promoting retranslocation for the reuse of strengthened nutrients from internal reserves in precultured seedlings. Transplantation to urbanized lands is distinct from that of montane areas; this is mainly due to a high frequency of exposure to the artificial illumination of night lighting. It is suspected that this lighting modifies vegetative phenology and generates potential risks by increasing reliance on internal nutrient retranslocation. In this study, Podocarpus macrophyllus seedlings were cultured with ENL at low and high rates of nitrogen (N) deliveries (40 and 120 mg N seedling−1, respectively), and the high-rate treatment was identified as being able to trap seedlings within toxic states. A labeled 15N isotope was pulsed to transplanted seedlings exposed to simulated light qualities in red, green, and blue light spectra. The seedlings harvested at one month showed rare responses to the interactive spectra and preculture treatments, but most of them responded to the low-rate N preculture treatment with stronger abilities in terms of the reuse of internal N and the synthesizing of photosynthetic pigments. In conclusion, it was verified that night light enforces the effect on newly transplanted plants; the red light invoked internal N for reuse, and the blue light promoted the uptake of the current N. The internal N reserve established through preculture ENL rarely made a contribution to the night light effect, except for the enhancement of height growth in the red light. The red light spectrum was recommended for the exposure of newly transplanted seedlings due to its effect on the enhancement of the retranslocation of internal N and the induction of a steady state of uptake from the current N input.

Funder

Research and Demonstration of Key Technologies for the Application of Organic Mulch in Landscape Construction

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3