Effect of precision planting and seeding rates on canola plant density and seed yield in southern Alberta

Author:

Dhillon Gurbir Singh12,Baarda Lewis12,Gretzinger Mike12,Coles Ken12

Affiliation:

1. Farming Smarter Assoc., 211034 Hwy 512, Lethbridge County, AB T1J 5N9, Canada

2. Farming Smarter Assoc., 211034 Hwy 512, Lethbridge County, AB T1J 5N9, Canada.

Abstract

Precision planters are recently being adopted for seeding canola to improve crop establishment and seed yield. This study determined the effect of seeding canola using precision planters (30.5 and 50.8 cm seeding row width) and conventional air drill seeders at different rates (20, 40, 60, 80, and 160 seeds m−2) on plant density and seed yield. The study was conducted for 4 yr (2016 to 2019) at three locations in southern Alberta. Plant density increased with higher seeding rates following the negative exponential function distribution. The yield-density relationship was non-linear asymptotic in nature and weak-to-moderate in strength at most site-years. The parameters of yield-density relationship did not show statistically significant differences among the air drill and precision planters. When averaged among seeding rates, canola yield was higher for the narrow row precision planter at 5 site-years and for the air drill at 2 site-years out of a total of 12 site-years. Under irrigated and high-precipitation conditions, seed yield in narrow-row precision planted canola was higher than air drill seeded canola. There was an average increase of 463 kg ha−1 (10%) in the seed yield in narrow-row precision planted canola compared with the air drill seeded canola among irrigated systems; however, under water-limited conditions, seed yield in air drill seeded canola was comparable or higher than the precision planted canola. Wide-row planter led to poor crop establishment and seed yield under both irrigated and dryland conditions, attributed to higher in-row plant density due to wider row spacing.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3