Diversity in genetic and downy mildew resistance among wild and mutagenized hops as revealed by single nucleotide polymorphisms and disease rating

Author:

Zaidi Mohsin1,Somalraju Ashok1,Ghose Kaushik2,McCallum Jason1,Mills Aaron1ORCID,Fillmore Sherry3,Fofana Bourlaye1ORCID

Affiliation:

1. Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada

2. Food Technology Building, Department of Plant and Soil Science, Texas Tech University, 2802 15th Street, Lubbock, TX 79409-2122, USA

3. Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main Street, Kentville, NS B4N 1J5, Canada

Abstract

Studies on wild and landrace hops from the Canadian Maritimes are scarce. This study was undertaken to broaden the genetic base of hops and to assess the reaction of the generated variants to downy mildew (DM) disease. A landrace hop (PE Royalty (P-RL)) and a commercial cultivar (Alpharoma) were mutagenized using ethylmethane sulphonate (EMS), and single nucleotide polymorphism (SNP) variations were determined using an amplicon sequencing genetic diversity study. A subset of wild types and a subset of mutagenized hops were inoculated with DM spores and rated for disease symptoms in a controlled environment. The data showed large EMS-induced genetic diversity in the target genes along with natural variations in the wild types. A diversity in DM resistance within the studied collection was also observed. The study showed DM tolerance in some P-RL landrace seedlings, suggesting that these P-RL landraces must have acquired and developed adaptation mechanisms to co-evolve with DM disease in the environment. Further, EMS-induced mutagenesis increased allelic variations that contributed to increased DM resistance in some seedlings. The data recommend the use of true hop seeds for increased genetic variability in breeding programs.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3