Affiliation:
1. Fachgebiet Mechanik, Universitāt Dulsburg Lotharslrabo 1, 4100 Dulsburg 1, Federal Repulic of Germany
Abstract
In complex multibody systems the motion of the bodies may depend on only a few degrees of freedom. For these systems, the equations of motion of minimal order, although more difficult to obtain, give a very efficient formulation. The present paper describes an approach for the automatic generation of these equations, which avoids the use of LAGRANGE-multipliers. By a particular concept, designated “kinematical differentials”, the problem of determining the partial derivatives required to state the equations of motion is reduced to a simple re-evaluation of the kinematics. These cover the solution of the global position, velocity and acceleration problems, i.e. the motion of all bodies is determined for given generalized (independent) coordinates. For their formulation and solution, the multibody system is mapped to a network of nonlinear transformation elements which are connected by linear equations. Each transformation element, designated “kinematical transformer”, corresponds to an independent multibody loop. This mapping of the constraint equations makes it possible to find closed-form solutions to the kinematics for a wide variety of technical applications, and (via kinematical differentials) leads also to an efficient formulation of the dynamics. The equations are derived for holonomic, scleronomic systems, but can also be extended to general nonholonomic systems.
Publisher
Canadian Science Publishing
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献