Reducing conditions induce a total degradation of the major zymogen granule membrane protein in both its membranous and its soluble form. Immunochemical quantitation of the two forms

Author:

Paquette Jean,Leblond François A.,Beattie Marlyne,LeBel Denis

Abstract

The major protein of the pig pancreatic zymogen granule membrane is an integral glycoprotein of 92 × 103 daltons (Da) which amounts to 25% of the total proteins of this membrane. When zymogen granule membranes were prepared in presence of 5 mM dithiothreitol (DTT), this glycoprotein specifically vanished from the membrane preparation. During membrane purification two other fractions were produced out of the purified granules: a soluble fraction of zymogens referred to as granule content and a dense pellet. The possibility that DTT could release the 92-kDa protein from the membrane to these other fractions has been rejected. Altogether, addition of DTT during the lysis of the granules induced a total degradation of the 92-kDa protein. This hydrolysis could be inhibited by phenylmethylsulfonyl fluoride but not by N-α-p-tosyl-L-lysine chloromethyl ketone or L-1-tosylamide-2-phenylethylchloromethyl ketone. In the course of these experiments, using gel filtration of the granule content, it was found that the 92-kDa protein was also present in the granule content in the form of an aggregate of 300 kDa. A protease was present in this aggregate and could hydrolyse the 92-kDa protein upon addition of DTT. From immunoblotting studies and rocket immunoelectrophoresis, it was found that the soluble 92-kDa protein was antigenically similar to the membrane protein and that 44% of the immunoreactive glycoprotein of the granule was soluble in the content. A cross-reacting fragment of 65 kDa has been observed in all the fractions, yet at different levels. It is concluded that as much of the 92-kDa protein is soluble in the content as it is anchored in the membrane. The protease responsible for its degradation upon addition of DTT seems to be closely associated with the protein and could be involved in its posttranslational solubilization leading to its secretion.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3