Overcompensatory response of a smallmouth bass (Micropterus dolomieu) population to harvest: release from competition?

Author:

Zipkin Elise F.123,Sullivan Patrick J.123,Cooch Evan G.123,Kraft Clifford E.123,Shuter Brian J.123,Weidel Brian C.123

Affiliation:

1. Department of Natural Resources, Cornell University, Fernow Hall, Ithaca, NY 14853, USA.

2. Harkness Laboratory of Fishery Research and Department of Zoology, 25 Harbord St., University of Toronto, Toronto, ON M5S 3G5, Canada.

3. Center for Limnology, University of Wisconsin–Madison, 680 North Park St., Madison, WI 53703, USA.

Abstract

An intensive seven-year removal of adult, juvenile, and young-of-the-year smallmouth bass ( Micropterus dolomieu ) from a north temperate lake (Little Moose Lake, New York, USA) resulted in an increase in overall population abundance, primarily due to increased abundance of immature individuals. We developed a density-dependent, stage-structured model to examine conditions under which population control through harvest could result in the increase of a targeted species. Parameter values were derived from a 54-year data set collected from another north temperate lake (Lake Opeongo, Ontario, Canada) smallmouth bass population. Sensitivity analyses identified the demographic conditions that could lead to increased abundance in response to harvest. An increase in population abundance with harvest was most likely to occur when either (i) per capita recruitment at low levels of spawner abundance was large, juvenile survivorship was high, and maturation of age-4 and older juveniles was moderately high or (ii) per capita recruitment at low levels of spawner abundance was slightly lower, yet the maturation rate of age-3 juveniles and adult survivorship were high. Our modeling results together with empirical evidence further demonstrate the importance of overcompensation as a substantial factor to consider in efforts to regulate population abundance through harvest.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3