Effects of poor recruitment on riverine Smallmouth Bass population dynamics

Author:

Keplinger Brandon1ORCID,Rota Christopher T.2ORCID

Affiliation:

1. West Virginia Division of Natural Resources Romney West Virginia USA

2. Division of Forestry and Natural Resources West Virginia University Morgantown West Virginia USA

Abstract

AbstractObjectiveAltered flow regimes pose significant risks to the stability of populations of riverine Smallmouth Bass Micropterus dolomieu. Periods of poor recruitment, due to early life stage mortality resulting from high‐flow events, can cause size‐structure and density alterations of populations. The aim of this study was to opportunistically test for changes in dynamic rates of a riverine Smallmouth Bass population using a long‐term data set that spanned a period of poor recruitment.MethodsOur study evaluated size‐specific CPUE (fish/h), mortality, growth, and condition and tested for recruitment determinants of Smallmouth Bass through three consecutive years of poor age‐0 recruitment in the South Branch Potomac River, West Virginia. We used fall nighttime boat electrofishing surveys during 2009–2022 to monitor this population before and after the poor‐recruitment time frame (2016–2018).ResultAge‐0 CPUE was greater during the time frame prior to the poor‐recruitment time frame. However, there was no difference in the CPUE of quality‐length Smallmouth Bass between the two time frames and CPUE of preferred‐length fish was greater during the poor‐recruitment time frame. Growth and relative weight increased during the poor‐recruitment time frame. There was no significant difference detected in mortality between the recruitment time frames. Streamflow during the spawning period was a significant factor influencing fall recruitment of age‐0 Smallmouth Bass. A Ricker density‐dependent model with an added streamflow term performed as well as a basic, log‐linear streamflow model and a density‐independent model that also incorporated a streamflow term.ConclusionOur results provide evidence of density‐dependent structuring in this population. Decreases in population density increased population dynamic rates that maintained or improved size structure. High adult biomasses did not increase age‐0 recruitment. Many riverine Smallmouth Bass populations may display favorable density‐dependent responses to declines in juvenile recruitment. Thus, management agencies should better understand the resiliency of these populations prior to establishing expensive programs or regulations, which may be ineffective, to combat alterations in juvenile recruitment.

Publisher

Wiley

Reference64 articles.

1. Stream Ecology

2. Evaluating the Potential for Stock Size to Limit Recruitment in Largemouth Bass

3. Fitting Linear Mixed-Effects Models Usinglme4

4. Baty F. &Delignette‐Muller M. L.(2015).nlstools: Tools for nonlinear regression analysis. R package version 1.0‐2.http://CRAN.R‐project.org/package=nlstools

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3