In situ and laboratory geotechnical tests of the Pierre Shale near Hayes, South Dakota—A characterization of engineering behavior

Author:

Nichols Jr. Thomas C.,Collins Donley S.,Davidson Richard R.

Abstract

A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U.S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties.Below 15–22 m, the shale is an unweathered, saturated, overconsolidated, underpressured clay shale with a clay-mineral content ranging between 50 and 100%, dominantly composed of mixed-layer illitic smectites. The physical and mechanical properties vary widely. The variation is related to the clay mineral content (especially in bentonite zones), a large transverse mechanical anisotropy, and zones of fractures and microfractures, which may result from rebound caused by erosion. These may contribute to slope instability over large areas. The thermal and mechanical properties change markedly if the shale is permitted to dry out. The state of stress and overconsolidation appear to be functions of the depositional and erosional history of the deposit. Both are markedly affected by the large fracture zones. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities. Key words: anisotropy, characterization, clay shale, consolidation state, physical properties, rebound, relaxation, stress state, thermal properties.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3