Geotechnical engineering significance of Great Plains polygonal fault system

Author:

St-Onge Andy11

Affiliation:

1. PFS Interpretations Ltd., 427 28 Avenue NW, Calgary, AB T2M 2K7, Canada.

Abstract

An extensive polygonal fault system (PFS) within fine-grained Upper Cretaceous sediments beneath the Great Plains of North America has implications for geotechnical engineering. Geological well control, outcrop, and three-dimensional seismic data from southeast Saskatchewan exemplify the fault characteristics typically observed within the PFS. The deepest faults are sparse, offset a seismic reflection identified from the Niobrara Formation Govenlock member, and have vertical offsets <2 m. The deformation increases in fault density and vertical offset at shallower depths, reaching 6 faults/km2 with up to 30 m of vertical offset. Upper Cretaceous strata throughout the Great Plains area are at or near outcrop, and the extensive PFS faulting and weathering have weakened the rock. This faulting and weakness have been observed and attributed to other factors such as glacial erosion, overconsolidation, swelling bentonite beds, or landslides from toe erosion at topographic slopes. The PFS faulting should be recognized as an extensive process to be considered when undertaking geotechnical analysis on the Great Plains where underlying Upper Cretaceous rocks exist. Engineering implications include road cuts, dam impoundments, building foundations, and natural slumping.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3