Late Quaternary glacial history and meltwater discharges along the Northeastern Newfoundland Shelf

Author:

Roger Jonathan1,Saint-Ange Francky23,Lajeunesse Patrick1,Duchesne Mathieu J.4,St-Onge Guillaume56

Affiliation:

1. Centre d’études nordiques, Département de géographie, Université Laval, Québec, QC G1V 0A6, Canada.

2. Natural Resources Canada, Bedford Institute of Oceanography, 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada.

3. Department of Oceanography, Dalhousie University, Halifax, NS B3H 4J1, Canada.

4. Natural Resources Canada, Geological Survey of Canada, Québec, QC G1K 9A9, Canada.

5. Canada Research Chair in Marine Geology, Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada.

6. GEOTOP Research Center, Montréal, QC H3C 3P8, Canada.

Abstract

The geomorphology of the Eastern Canadian margin has been shaped by glacial processes during the Quaternary. Many studies have focused on the ice-sediment pathway through Hudson Strait to reconstruct the dynamics of the Laurentide Ice Sheet, and as a consequence, little is known on its marginal ice domes. Here we reconstruct the dynamics of two trough mouth fans (TMFs) offshore NE Newfoundland using sediment cores and radiocarbon ages supported by very high resolution seismic reflection profiles. These two TMFs, namely Notre Dame and Hawke, are fed by two glacial troughs incised in the bedrock. The TMFs show a complete sedimentary sequence from 30 ka BP to the beginning of the Holocene. The sampled sedimentary record on the upper slope extends back to a thick Heinrich event 3 (H3) deposit that corresponds to the end of the maximum extent of the Newfoundland ice dome. Above H3, a thick succession of turbidite deposits (>10 m) observed in both TMFs is correlated with periods of major meltwater supply from 28–29 to 17 ka BP. Our results show that the Last Glacial Maximum (LGM) period was characterized by major input of meltwater events stemming from the Newfoundland dome. The presence of H1 (∼17 ka BP) coincide with the end of the turbidite activity which is replaced by an open-water environment characterized by hemipelagic sediments rich in ice-rafted debris. The proglacial muddy sediment older than 13.3 ka BP on the shelf shows that ice was not grounded after H1, suggesting a very rapid retreat of the ice on the Newfoundland shelf after 17 ka BP.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3