Climatic control on the retreat of the Laurentide Ice Sheet margin in easternmost Québec–Labrador (Canada) revealed by cosmogenic nuclide exposure dating

Author:

Couette Pierre‐Olivier12ORCID,Ghienne Jean‐François2,Lajeunesse Patrick1,Van der Woerd Jérôme2

Affiliation:

1. Département de Géographie Université Laval Québec Canada

2. Institut Terre & Environnement de Strasbourg (ITES), UMR 7063, CNRS Université de Strasbourg Strasbourg France

Abstract

ABSTRACTThe Laurentide Ice Sheet (LIS) was the largest ice sheet in the Northern Hemisphere during the last glacial cycle. The effects of its demise on global climate and sea‐level changes during the subsequent deglaciation are unequivocal. Understanding the interplay between ice sheets and long‐term or short‐term (e.g. abrupt) climatic events is therefore crucial for predicting future rates of ice sheet melting and their potential contribution to sea‐level changes. Here, we present 37 new 10Be surface exposure ages from easternmost Québec–Labrador that allow us to identify close ties between regional deglaciation history and climate. These results reveal that the LIS was disconnected from the Newfoundland Ice Cap by ~14.1 ka. Samples collected from moraine boulders indicate that this event was followed by five major stillstands and/or readvance stages of the LIS margin. Integrating our new moraine ages with those of earlier studies allows us to depict a temporal framework including events at ~12.9, ~11.5, ~10.4, ~9.3 and ~8.4–8.2 ka. These moraine ages highlight a strong sensitivity of the LIS to temperature changes in the Northern Hemisphere, as the documented continental ice margin stabilizations coincide with abrupt cooling events recorded in Greenland ice cores. These observations support the idea of a negative feedback mechanism induced by meltwater forcings into the North Atlantic Ocean which, in turn, provoked repeated cold reversals during the Younger Dryas and early Holocene.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Polar Knowledge Canada

Publisher

Wiley

Subject

Paleontology,Earth and Planetary Sciences (miscellaneous),Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3