40Ar/39Ar thermochronology of the Thor-Odin – Pinnacles area, southeastern British Columbia: tectonic implications of cooling and exhumation patterns

Author:

van Rooyen D.12,Carr S.D.2

Affiliation:

1. Department of Mathematics, Physics, and Geology, Cape Breton University, Sydney, NS B1P 6L2, Canada.

2. Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.

Abstract

The Thor-Odin dome is a basement-cored tectonothermal culmination in southern British Columbia, containing high-grade metamorphic rocks that were polydeformed during the Cordilleran orogenesis. A north–south 40Ar/39Ar thermochronology transect was carried out throughout a ∼7 km thick tilted section in the Thor-Odin dome and structurally overlying rocks to construct thermochronological histories using existing U–Pb geochronology data with new 40Ar/39Ar data and to determine the nature of the boundary between the dome and overlying rocks at Cariboo Alp. Hornblende cooling dates are ∼62–58 Ma at the highest structural level, ∼57–55 Ma in the middle, and ∼57–53 Ma at Cariboo Alp on the upper boundary of the dome. Muscovite and biotite cooling dates are ∼53–50.5 Ma; identical throughout the dome, margin, and overlying panel. The Cariboo Alp area separating the Thor-Odin dome from overlying rocks did not accommodate major post-cooling extensional deformation; rather, it is a Late Cretaceous to Paleocene compressional shear zone. These domains cooled at different rates from >700 to ca. 300 °C, with upper structural levels cooling at rates of ca. 20 °C/Ma and the lowest levels at rates in excess of 120 °C/Ma. All levels passed through the closure temperature for argon in biotite (here calculated to be 320–330 °C) together at ca. 52–51 Ma. Differential cooling rates are the result of interaction between northeast-directed compressional transport of rocks towards the foreland of the orogen overlapping with activity on the Columbia River fault zone, reflecting crustal-scale extension that reached a peak in the Eocene.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3