Geochronology and tectonic implications of magmatism and metamorphism, southern Kootenay Arc and neighbouring regions, southeastern British Columbia. Part II: Mid-Cretaceous to Eocene

Author:

Archibald D. A.,Krogh T. E.,Armstrong R. L.,Farrar E.

Abstract

A north–south-trending belt of amphibolite facies regional metamorphism parallels the Purcell Trench, transects the Kootenay Arc, and is, in part, fault bounded. Towards the axis of this belt progressively higher pressure metamorphic mineral assemblages are exposed in the contact aureoles of post-kinematic, mid-Cretaceous (~100 Ma) plutons and in metapelites. Contours of K–Ar biotite dates for plutonic rocks (55–95 Ma) are regular, are broadly conformable with metamorphic isograds, appear to cross internal intrusive contacts of post-kinematic plutons, and young towards the highest pressure and temperature regional metamorphic zones. Within the sillimanite zone most micas yield K–Ar dates between 40 and 55 Ma; Rb–Sr muscovite dates for deformed and undeformed pegmatites and for muscovite-bearing monzogranite and granodiorite fall between 53 and 84 Ma. U–Pb zircon dates for the Kaniksu batholith and nearby gneiss of uncertain origin yield a lower concordia intercept of 94 Ma. Micas from mid-Jurassic and mid-Cretaceous plutons yielding conventional K–Ar dates between 55 and 100 Ma also yield plateau-shaped 40Ar/39Ar age spectra that are indicative of normal closure to Ar diffusion due to cooling during this time interval.Contrasting isotopic cooling curves for plutonic rocks in the Purcell Anticlinorium and in the metamorphic infrastructure imply that these regions had different thermal histories. Combined with metamorphic mineral assemblage data and interpreted in terms of uplift and erosion, these curves support a tectonothermal model for the development of the Kootenay Arc and Purcell Anticlinorium that involves (1) mid-Cretaceous emplacement of post-kinematic plutons into a tectonically dormant supra-structure accompanying renewed heating, deformation, and metamorphism in the deepest levels of an evolving infrastructure; (2) slow cooling from mid- to Late Cretaceous time; (3) uplift and erosion of the continental terrace wedge and post-kinematic plutons and parts of the mid-Cretaceous infrastructure in latest Cretaceous–earliest Tertiary time as these rocks were thrust eastward over a steplike feature in the basement leading to the formation of the Purcell Anticlinorium; and (4) rapid uplift and cooling of the metamorphic infrastructure in Eocene time.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3