Response of the microflora in outdoor experimental streams to pentachlorophenol: environmental factors

Author:

Pignatello Joseph J.,Johnson LeeAnn K.,Martinson Michael M.,Carlson Robert E.,Crawford Ronald L.

Abstract

The 2nd year of a 2-year study of the fate of pentachlorophenol in outdoor artificial streams focused on details of microbial degradation by a combination of in situ and laboratory measurements. Replicate streams were dosed continuously at pentachlorophenol concentrations of 0, 48, and 144 μg/L, respectively, for an 88-d period during the summer of 1983. Pentachlorophenol was degraded both aerobically and anaerobically. Aerobic degradation was more rapid than anaerobic degradation. Mineralization of pentachlorophenol was concommitant with pentachlorophenol disappearance under aerobic conditions, but lagged behind loss of the parent molecule under anaerobic conditions. Biodegradation in the streams, or in specific stream compartments such as the sediment or water column, was characterized by an adaptation period (3–5 weeks for the stream as a whole, and reproducible from the previous year), which was inversely dependent on the concentration of pentachlorophenol and microbial biomass. The adaptation in the streams could be attributed to the time necessary for selective enrichment of an initially low population of pentachlorophenol degraders on surface compartments. The extent of biodegradation in the streams (percent loss of initial concentration of pentachlorophenol) increased with increasing pentachlorophenol input, which was explicable by an increase in the pentachlorophenol degrader population with increasing pentachlorophenol concentration. The sediment zone most significant to overall pentachlorophenol biodegradation was the top 0.5- to 1-cm layer as shown by pentachlorophenol migration rates and depth profiles of degrader density within the sediment. Pentachlorophenol profiles in sediment cores taken during and after the adaptation period for degradation showed that diffusion of pentachlorophenol into the sediment was rate limiting to degradation in this compartment. Degradation rates were independent of temperature within the temperature range of the streams during the dosing season (19–30 °C), but became increasingly slower below 19 °C. The impact of sudden increases in toxicant level (to 10 or 100 mg/L) on degradation was significant (negative), and was assessed by laboratory experiments with sediments. Total heterotrophic activity of sedimentary communities over a major part of the season was unaffected by pentachlorophenol at all stream concentrations tested.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pentachlorophenol;Handbook of Chemical Risk Assessment;2000-04-12

2. A simple method to evaluate the concentration of pentachlorophenol degraders in contaminated soils;FEMS Microbiology Letters;2000-03-15

3. A simple method to evaluate the concentration of pentachlorophenol degraders in contaminated soils;FEMS Microbiology Letters;2000-03

4. Biodegradation of organic pollutants at low temperatures;Biotechnological Applications of Cold-Adapted Organisms;1999

5. Two New Mycobacterium Strains and Their Role in Toluene Degradation in a Contaminated Stream;Applied and Environmental Microbiology;1998-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3