Two New Mycobacterium Strains and Their Role in Toluene Degradation in a Contaminated Stream

Author:

Tay Stephen T.-L.1,Hemond Harold F.1,Polz Martin F.2,Cavanaugh Colleen M.2,Dejesus Indhira1,Krumholz Lee R.3

Affiliation:

1. Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 021391;

2. Department of Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, Cambridge, Massachusetts 021382; and

3. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 730193

Abstract

ABSTRACT Two toluene-degrading strains, T103 and T104, were isolated from rock surface biomass in a freshwater stream contaminated with toluene. The strains exhibit different capacities for degradation of toluene and other aromatic compounds and have characteristics of the genus Mycobacterium . Both are aerobic, rod-shaped, gram-positive, nonmotile, and acid-alcohol fast and produce yellow pigments. They have mainly straight-chain saturated and monounsaturated fatty acids with 10 to 20 carbon atoms and large amounts of tuberculostearic acid that are typical of mycobacteria. Fatty acid analyses indicate that T103 and T104 are different mycobacterial strains that are related at the subspecies level. Their identical 16S rDNA sequences are most similar to Mycobacterium aurum and Mycobacterium komossense , and they constitute a new species of fast-growing mycobacteria. Ecological studies reveal that toluene contamination has enriched for toluene-degrading bacteria in the epilithic microbial community. Strains T103 and T104 play only a small role in toluene degradation in the stream, although they are present in the habitat and can degrade toluene. Other microorganisms are consequently implicated in the biodegradation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3