Lack of Genetic Stock Discretion in Pacific Cod (Gadus macrocephalus)

Author:

Grant W. Stewart,Zhang Chang Ik,Kobayashi Tokimasa,Ståhl Gunnar

Abstract

We examined the ocean-wide genetic population structure of Pacific cod (Gadus macrocephalus) using electrophoretically detectable population markers at 41 protein loci. Samples were collected at 11 locations extending over most of the species's range from the Yellow Sea, Korea, to Puget Sound, Washington. Seven loci (17%) were polymorphic using the 0.05 criterion of polymorphism. Sample heterozygosities ranged from 0.018 to 0.041 and averaged 0.025 (±0.013). Two major genetic groups were detected: a western North Pacific Ocean (Asian) group and an eastern North Pacific group (including Bering Sea stocks). The UPGMA Nei genetic distance, D, (based on 41 loci) between samples from these two groups was 0.025, and this subdivision accounted for 18.9% of the total gene diversity. Genetic differentiation between these two groups appears to reflect the barrier effects of coastal Pleistocene glaciation. Morphological and tagging data from other studies suggest that Pacific cod are subdivided into several independent stocks. In this study, significant allele-frequency differences were detected between samples within the eastern North Pacific Ocean, the Bering Sea, and the western North Pacific Ocean, but not between stocks on a larger geographic scale. The average Nei genetic distance (based on 41 loci) between samples was only 0.0007, and a gene diversity analysis indicated that within-region differences represented only 3.1% of the total gene diversity. There was a slightly greater amount of differentiation between the Yellow Sea and the Sea of Japan (D = 0.0041), which reflects geographic isolation of the Yellow Sea stock not found in other areas. From theoretical considerations, little genetic divergence between stocks of Pacific Cod is expected because random genetic drift in large population sizes is insignificant and because migration between areas prevents genetic differentiation.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3