Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system

Author:

Adesemoye A.O.12,Torbert H.A.12,Kloepper J.W.12

Affiliation:

1. Department of Entomology & Plant Pathology, 209 Life Science Building, Auburn University, Auburn, AL 36849, USA.

2. USDA Agricultural Research Services, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36849, USA.

Abstract

A 3 year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield can enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient management system. The field trial evaluated microbial inoculants, which include a commercially available plant growth-promoting rhizobacteria (PGPR), arbuscular mycorrhiza fungi (AMF), and their combination across 2 tillage systems (no-till and conventional till) and 2 fertilization regimes (poultry litter and ammonium nitrate). Data were collected on plant height, yield (dry mass of ears and silage), and nutrient content of corn grain and silage. In addition, nutrient content of soil was determined, and bioavailability of soil nutrient was measured with plant root simulator probes. Results showed that inoculants promoted plant growth and yield. For example, grain yields (kg·ha–1) in 2007 for inoculants were 7717 for AMF, 7260 for PGPR+AMF, 7313 for PGPR, 5725 for the control group, and for fertilizer were 7470 for poultry litter and 6537 for NH4NO3. Nitrogen content per gram of grain tissues was significantly enhanced in 2006 by inoculant, fertilizer, and their interactions. Significantly higher amounts of N, P, and K were removed from the plots with inoculants, based on total nutrient content of grain per plot. These results supported the overall hypothesis and indicate that application of inoculants can lead to reduction in the build up of N, P, and K in agricultural soils. Further studies should be conducted to combine microbial inoculants with reduced rates of fertilizer.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3