Extracellular hyperosmotic stress stimulates glucose uptake in incubated fast-twitch rat skeletal muscle

Author:

Farlinger Chris M.1,Lui Adrian J.1,Harrison Rose C.1,LeBlanc Paul J.2,Peters Sandra J.3,Roy Brian D.3

Affiliation:

1. Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.

2. Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Community Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.

3. Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.

Abstract

The influence of hyperosmotic stress on glucose uptake, handling, and signaling processes remains unclear in mammalian skeletal muscle. Thus, the purpose of this study was to investigate alterations in glucose uptake and handling during extracellular hyperosmotic stress in isolated fast-twitch mammalian skeletal muscle. Using an established in vitro isolated whole-muscle model, extensor digitorum longus (EDL) muscles were dissected from male rats (4–6 weeks of age) and incubated (30–60 min) in an organ bath, containing Sigma Medium-199 with 8 mmol·L−1D-glucose, and mannitol was added to the targeted osmolalities (ISO, iso-osmotic, 290 mmol·kg−1; HYPER, hyperosmotic, 400 mmol·kg−1). Results demonstrate that relative water content decreased in HYPER. HYPER resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and glucose-6-phosphate), suggesting a decrease in energy charge. Glucose uptake was also found to be higher in HYPER, and AS160 (implicated in insulin- and contraction-mediated glucose uptake) was found to be significantly more phosphorylated in HYPER than in ISO after 30 min. In conclusion, glucose uptake and handling is altered with hyperosmotic extracellular stress in the fast-twitch EDL. The increases in glucose uptake might be facilitated through alterations in AS160 signaling after 30 to 60 min of osmotic stress.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3