Author:
Faltin Franziska,Lottmann Jana,Grosch Rita,Berg Gabriele
Abstract
A screening strategy was developed to assess the potential of plant-associated bacteria to control diseases caused by Rhizoctonia solani Kühn. About 434 already characterized antagonistic bacterial strains isolated from diverse plant species and microenvironments were evaluated for biocontrol and plant growth promotion by a hierarchical combination of assays. Analyzing in vitro antagonism towards different Rhizoctonia isolates resulted in a selection of 20 potential biocontrol agents. The strains were characterized by their antagonistic mechanisms in vitro as well as their production of the plant growth hormone indole-3-acetic acid. The plant growth promoting effect by antagonistic bacteria was determined using a microtiter plate assay on the basis of lettuce seedlings. Lettuce and sugar beet as host plant were included in the biocontrol experiments in which the antagonistic effect of 17 bacterial isolates could be confirmed in vivo. Sequencing of the 16S rDNA gene and (or) fatty acid methyl ester gas chromatography was used to identify the antagonistic isolates. Molecular fingerprints of isolates obtained by BOX – polymerase chain reaction were compared to avoid further investigation with genetically very similar strains and to obtain unique molecular fingerprints for quality control and patent licensing. According to our strategy, an assessment scheme was developed and four interesting biological control agents, Pseudomonas reactans B3, Pseudomonas fluorescens B1, Serratia plymuthica B4, and Serratia odorifera B6, were found. While S. plymuthica B4 was the best candidate to biologically control Rhizoctonia in lettuce, P. reactans B3 was the best candidate to suppress the pathogen in sugar beet.Key words: biocontrol, Rhizoctonia solani, lettuce, sugar beet, antagonistic bacteria.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology