High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle

Author:

Perry Christopher G.R.12,Heigenhauser George J.F.12,Bonen Arend12,Spriet Lawrence L.12

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

2. Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.

Abstract

High-intensity aerobic interval training (HIIT) is a compromise between time-consuming moderate-intensity training and sprint-interval training requiring all-out efforts. However, there are few data regarding the ability of HIIT to increase the capacities of fat and carbohydrate oxidation in skeletal muscle. Using untrained recreationally active individuals, we investigated skeletal muscle and whole-body metabolic adaptations that occurred following 6 weeks of HIIT (~1 h of 10 × 4 min intervals at ~90% of peak oxygen consumption (VO2 peak), separated by 2 min rest, 3 d·week–1). A VO2 peaktest, a test to exhaustion (TE) at 90% of pre-training VO2 peak, and a 1 h cycle at 60% of pre-training VO2 peakwere performed pre- and post-HIIT. Muscle biopsies were sampled during the TE at rest, after 5 min, and at exhaustion. Training power output increased by 21%, and VO2 peakincreased by 9% following HIIT. Muscle adaptations at rest included the following: (i) increased cytochrome c oxidase IV content (18%) and maximal activities of the mitochondrial enzymes citrate synthase (26%), β-hydroxyacyl-CoA dehydrogenase (29%), aspartate-amino transferase (26%), and pyruvate dehydrogenase (PDH; 21%); (ii) increased FAT/CD36, FABPpm, GLUT 4, and MCT 1 and 4 transport proteins (14%–30%); and (iii) increased glycogen content (59%). Major adaptations during exercise included the following: (i) reduced glycogenolysis, lactate accumulation, and substrate phosphorylation (0–5 min of TE); (ii) unchanged PDH activation (carbohydrate oxidation; 0–5 min of TE); (iii) ~2-fold greater time during the TE; and (iv) increased fat oxidation at 60% of pre-training VO2 peak. This study demonstrated that 18 h of repeated high-intensity exercise sessions over 6 weeks (3 d·week–1) is a powerful method to increase whole-body and skeletal muscle capacities to oxidize fat and carbohydrate in previously untrained individuals.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3