Upper Triassic igneous rocks of the southern Kenai Peninsula, Alaska—prelude to Early Jurassic subduction along the Western Wrangellia composite terrane margin

Author:

Hudson Travis L.1ORCID,Wilson Frederic H.2,O'Sullivan Paul3

Affiliation:

1. Applied Geology, Inc., 701 Alice Loop, Sitka, AK 99835, USA

2. U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA

3. GeoSep Services, 1521 Pine Cone Road, Moscow, ID 83843, USA

Abstract

New U–Pb zircon geochronology identifies a latest Triassic (ca 214–201 Ma) igneous suite of tuff, hypabyssal dikes, and a pluton on the southern Kenai Peninsula, Alaska. The igneous suite was emplaced within Upper Triassic sedimentary rocks along the southern margin of Western Wrangellia, the western-most fragment of the Wrangellia composite terrane. The igneous rocks range from mafic (50.6% SiO2) to felsic (78.3% SiO2), characteristically have less than 1.55% K2O, and generally have low trace element abundances. The tonalitic and trondhjemitic magmas were largely sourced in mafic-rich lower crust and incompletely assimilated quartz and other mineral xenocrysts are common. Fractionation involving plagioclase and amphibole is indicated for some magmas and composite intrusions and igneous xenoliths indicate magma mixing was possible. Paleozoic and Precambrian inherited zircons and initial 87Sr/86Sr (0.704103–0.705609) and 143Nd/144Nd (0.512396–0.512777) ratios indicate that the Western Wrangellia crustal sources are heterogeneous and contain sialic components. The latest Triassic magmatism reflects processes that preceded Early Jurassic subduction along the Wrangellia composite terrane and Pacific Ocean plate boundary. These processes involved heating and melting of mantle lithosphere and lower crust as mantle instabilities accompanied the breaking of the plate boundary linkages. The Late Triassic transition to subduction along the Wrangellia composite terrane margin coincided with the transition to subduction cessation in the Late Triassic arcs of the western Intermontane terranes of Canada. The shift to subduction along the outboard Wrangellia composite terrane margin marks the beginning of the Pacific Ocean–Cordillera plate interactions that came to dominate the tectonic evolution of the northern Cordillera from the Early Jurassic to today.

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3