Affiliation:
1. Department of Geosciences University of Arizona Tucson AZ 85721 USA arizona.edu
2. British Columbia Geological Survey Victoria British Columbia V8W 9N3 Canada gov.bc.ca
Abstract
Abstract
Wrangellia is a late Paleozoic arc terrane that occupies two distinct coastal regions of western Canada and Alaska. The Skolai arc of northern Wrangellia in south-central Alaska and Yukon has been linked to the older, adjacent Alexander terrane by shared Late Devonian rift-related gabbros and also by Late Pennsylvanian postcollisional plutons. Late Devonian to Early Permian Sicker arc rocks of southern Wrangellia are exposed in uplifts on Vancouver Island, southwestern British Columbia, surrounded by younger strata and lacking physical connections to other terranes. Utilizing the detrital zircon record of Paleozoic and Cretaceous sedimentary rocks, we provide insight into the magmatic and depositional evolution of southern Wrangellia and its relationships to both northern Wrangellia and the Alexander terrane. 1422 U-Pb LA-ICPMS analyses from the Fourth Lake Formation (Mississippian–Permian) reveal syndepositional Carboniferous age peaks (344, 339, 336, 331, and 317 Ma), sourced from the Sicker arc of southern Wrangellia. These populations overlap in part known ages of volcanism, but the Middle Mississippian cumulative peak (337 Ma) documents a previously unrecognized magmatic episode. Paleozoic detrital zircons exhibit intermediate to juvenile ƐHft values between +15 and +5, indicating that southern Wrangellia was not strictly built on primitive oceanic crust, but instead on transitional crust with a small evolved component. The Fourth Lake samples yielded 49 grains (3.4% of the total grains analyzed) with ages between 2802 Ma and 442 Ma, and with corresponding ƐHft values ranging from +13 to -20. In age—ƐHft space, these grains fall within the Alexander terrane array. They were probably derived from sedimentary rocks in the basement of the Sicker arc. By analogy with northern Wrangellia, this basement incorporated rifted fragments of the Alexander terrane margin as the combined Sicker-Skolai arc system advanced ocean-ward due to slab rollback in Late Devonian to Early Mississippian time. Ultimately, data from detrital zircons preserved in the Fourth Lake Formation provides significant information allowing for an updated tectonic model of Paleozoic Wrangellia.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Upper Triassic igneous rocks of the southern Kenai Peninsula, Alaska—prelude to Early Jurassic subduction along the Western Wrangellia composite terrane margin;Canadian Journal of Earth Sciences;2024-09-01
2. Middle Jurassic to Early Cretaceous orogenesis in the Klamath Mountains Province (Northern California–southern Oregon, USA) occurred by tectonic switching: Insights from detrital zircon U-Pb geochronology of the Condrey Mountain schist;Geosphere;2024-04-12
3. Stratigraphy, palaeogeography and evolution of the lower Nanaimo Group (Cretaceous), Georgia Basin, Canada;Basin Research;2023-11-30
4. Late Jurassic paleogeography of the U.S. Cordillera from detrital zircon age and hafnium analysis of the Galice Formation, Klamath Mountains, Oregon and California, USA;Geological Society of America Bulletin;2023-08-16
5. Improved Provenance Constraints for Nanaimo Group Sediments, British Columbia, Canada, Through Zircon LA‐ICP‐MS Depth‐Profiling;Tectonics;2022-12