Kinematic performance and muscle activation patterns during post-freeze locomotion in the Wood Frog (Rana sylvatica)

Author:

Santos-Santos Javier H.12,Culbert Brett M.3,Standen Emily M.3

Affiliation:

1. Department of Animal Biology, University of Barcelona, Avenida Diagonal 645, 08028, Barcelona, Spain.

2. Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales - CSIC, Calle Jose Gutierrez Abascal 2, 28006, Madrid, Spain.

3. Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Abstract

Wood Frogs (Rana sylvatica LeConte, 1825 = Lithobates sylvaticus (LeConte, 1825)) exhibit one of the most extreme freeze tolerance responses found in vertebrates. While extensive work is continuing to resolve the physiological mechanisms involved, few have studied the effects of freezing on locomotor performance. The ability to mount an appropriate locomotor response is vital, as locomotion can affect both survivorship and reproductive success. To investigate how the biomechanical processes during locomotion are altered following freezing, stroke cycle timings and kinematic performance were measured prior to and immediately following a freeze–thaw cycle. Additionally, the effects of cooling rate (0.3 versus 0.8 °C/h) were also assessed. While jumping and swimming performance were both reduced post-freeze, the effects were more pronounced during swimming, with observed reductions in velocity and distance travelled. Interestingly, these changes occurred largely independent of cooling rate. Altered stroke cycle timings and highly variable muscle activation/deactivation patterns suggest an impairment in muscle function as frogs continued to recover from the effects of freezing. This was supported by the physiology of frogs post-freeze, specifically, the persistence of elevated glucose levels in muscles important during locomotion. Collectively, these findings suggest that reductions in locomotor performance observed immediately following a freeze–thaw cycle are driven by alterations in muscle function.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3