Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance

Author:

Churchill T. A.1,Storey K. B.1

Affiliation:

1. Institute of Biochemistry, Carleton University, Ottawa, Ontario,Canada.

Abstract

Wood frogs, Rana sylvatica, tolerate the loss of 50-60% of total body water during experimental dehydration. The rate of water loss for unprotected frogs is the same whether animals are frozen (at -2 degrees C) or unfrozen (at 1 degrees C) but is greatly reduced when frogs are frozen under a protective layer of moss. Dehydrational death could occur in as little as 7-9 days for unprotected animals; this indicates the importance for winter survival of selecting well-protected and damp hibernation sites. Prior dehydration affected the cooling and freezing properties of frogs, reducing supercooling point and the amount of ice formed after 24 h at -2 degrees C and acting synergistically with freezing exposure in stimulating cryoprotectant synthesis. Analysis of the effects of controlled dehydration at 5 degrees C showed that changes in body water content alone (without freezing) stimulated liver glycogenolysis and the export of high concentrations of glucose into blood and other organs. Autumn-collected frogs dehydrated to 50% of total body water lost showed glucose levels of 165-1,409 nmol/mg protein in different organs, increases of 9- to 313-fold compared with control values and reaching final levels very similar to those induced by freezing exposure. The data support the proposal that various adaptations for natural freeze tolerance may have been derived from preexisting mechanisms for dealing with water stress in amphibians and that cell volume change may be one of the signals involved in triggering and sustaining molecular adaptations (e.g., cryoprotectant output) that support freezing survival.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3