Absorption Cross Sections of Stratospheric Molecules

Author:

Hudson R. D.

Abstract

Photoabsorption cross sections necessary for calculations of the equilibrium conditions in the stratosphere fall into two distinct classes: cross sections for molecular oxygen and ozone, which control the transmission of solar radiation; cross sections for minor atmospheric species which are optically thin to solar radiation, and which are needed to calculate their rates of dissociation.The principal absorption features of molecular oxygen are absorption bands of the Schumann–Runge system between 175 and 200 nm and a weak dissociation continuum which extends from 175 to 260 nm. The band structure consists of many sharp rotational lines, and it is necessary to calculate cross sections using measured band parameters. Two measurements of the line widths for these bands have obtained large line widths (∼1 cm−1) indicating predissociation. The agreement between the two sets of data is good for only a few lines. This has implications in the calculation of the transmission of solar radiation to the lower stratosphere. The continua have been measured by four groups. The results agree, within the respective experimental errors, near 220 nm, but disagree near 250 nm.Ozone has a continuous absorption spectrum between 175 and 300 nm with band structure above 300 nm. Four sets of data are available which agree within ±2%. The cross section above 300 nm is temperature dependent. The cross sections for the minor species are in general not as well known. In nitric oxide, carbon monoxide, ammonia, and sulfur dioxide, band structure dominates the absorption spectrum, and cross sections have been measured at insufficient spectral resolution. Other species, such as nitric acid, hydrogen peroxide, water vapor, carbon dioxide, nitrous oxide, and nitrogen dioxide, have continua over the entire spectra range from 175 to 300 nm. Cross sections for these species have been measured; however, cross sections for many molecules, e.g., N2O5, NO3, etc., have not been studied.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3