Calculation of Radiative Properties for [82%Ar-18%CO2]-Fe Plasmas in MAG Welding Arc

Author:

Wang Fei,Liu Hongbing,Liu Xiaoli,Zhang Lingfeng,Yang Po,Zhang Tianli,Yu Zhishui,Li Huan,Cressault YannORCID

Abstract

This paper is dedicated to the calculation of the radiative properties of 82%argon-18%CO2 thermal plasmas with the addition of metallic vapors (iron, in the present case, due to workpiece and wire erosion), this mixture being representative of metal active gas (MAG) arc welding processes. These radiative properties are obtained in the frame of the net emission coefficient (NEC) theory, using the recent and accurate “line by line” method. All significant radiative contribution mechanisms are taken into account in the calculation: atomic lines, atomic continuum (radiative attachment, radiative recombination, and bremsstrahlung), molecular bands for diatomic and polyatomic molecules, and molecular continuum. Broadening phenomena (Doppler and pressure effects) are also carefully treated for bound-bound transitions (atomic lines and molecular bands). Regarding 82%Ar-18%CO2 plasma, the results obtained demonstrate the key role of molecular bands at low temperatures (T < 4 kK), whereas the atomic line and continuum prevailed at intermediate and high temperatures. With the addition of a few percentages of iron vapor, it was shown that the total NEC is significantly increased (especially at low temperatures) and that the atomic and ionic lines become dominant in all the studied temperature ranges (3–30 kK). This theoretical study will constitute a groundwork to build a diagnostic method (based on the calculation of partial NECs for accurately chosen spectral intervals) for the determination of plasma temperature and iron vapor concentration in welding arcs.

Funder

National Natural Science Foundation of China

Jiangsu Province Science and Technology Achievement Transformation Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3