Author:
Lu Ying-Jie,Zhang Yong-Mei,Rock Charles O
Abstract
Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. FAS II has been extensively studied in the Escherichia coli model system, and the recent explosion of bioinformatic information has accelerated the investigation of the pathway in other organisms, mostly important human pathogens. All FAS II systems possess a basic set of enzymes for the initiation and elongation of acyl chains. This review focuses on the variations on this basic theme that give rise to the diversity of products produced by the pathway. These include multiple mechanisms to generate unsaturated fatty acids and the accessory components required for branched-chain fatty acid synthesis in Gram-positive bacteria. Most of the known mechanisms that regulate product distribution of the pathway arise from the fundamental biochemical properties of the expressed enzymes. However, newly identified transcriptional factors in bacterial fatty acid biosynthetic pathways are a fertile field for new investigation into the genetic control of the FAS II system. Much more work is needed to define the role of these factors and the mechanisms that regulate their DNA binding capability, but there appear to be fundamental differences in how the expression of the pathway genes is controlled in Gram-negative and in Gram-positive bacteria.Key words: fatty acid synthase, bacteria.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献