Capillary effect on flow in the drainage layer of highway pavement

Author:

Dan Han-Cheng12,Xin Pei2,Li Ling2,Li Liang1,Lockington David2

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China.

2. National Centre for Groundwater Research and Training, School of Civil Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.

Abstract

This paper aims to examine capillarity effect on flows in the drainage layer of highway pavement. A two-dimensional (2-D) model based on the Richards equation was used to simulate saturated and unsaturated flows in the drainage layer. For comparison, flows were also simulated using a 1-D Boussinesq equation based model and a 2-D model based on the Laplace equation, both assuming saturated flow only. The drainage layer was modeled with sand and gravel, which possess similar hydraulic properties to those of commonly used filling materials in practice. The results showed that the two saturated flow models agreed well with each other, indicating the dominance of horizontal flow in the drainage layer. However, their predictions differed significantly from those of the variably saturated flow models. The latter model predicted significant flow activities in a relatively large unsaturated zone, especially for a sandy drainage layer. Such unsaturated flow contributes to and enhances the capacity of the drainage layer. With the unsaturated flow neglected, the saturated flow models over-predicted the extent of the saturated zone and hence the groundwater table elevation. As the current engineering design of the drainage layer is typically based on the groundwater table elevation predicted by the saturated flow models, the finding of this study suggests that the design criterion is likely to lead to over-design of the drainage system. Further work is also required to prove the practical significance of the capillary effect and account for other factors.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference32 articles.

1. AASHTO. 1998. Guide for Design of Pavement structures. American Association of State Highway and Transportation Officials, Washington, D.C.

2. Effective Approach to Improve Pavement Drainage Layers

3. Bear, J. 1972. Dynamics of fluids in porous media. Elsevier, New York, USA.

4. Drainage of Pavement Base Material: Design and Construction Issues

5. Cedergren, H.R. 1974. Drainage of highway and airfield pavements, Wiley, New York, USA.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3