Application of a two-dimensional hydrodynamic reservoir model to Lake Erie

Author:

Boegman L,Loewen M R,Hamblin P F,Culver D A

Abstract

The relative impacts of changes in nutrient loading and zebra mussel establishment on plankton in large lakes are strongly influenced by hydrodynamics, yet adequately modelling the temporal-spatial complexity of physical and biological processes has been difficult. We adapted a two-dimensional public domain model, CE-QUAL-W2, to test whether it could provide a hydrodynamically accurate simulation of the seasonal variation in the vertical-longitudinal thermal structure of Lake Erie. The physical forcing for the model is derived from surface meteorological buoys and measurements of precipitation, inflows, and outflows. To calibrate and validate the model, predictions were compared with an extensive set of field data collected during May through September 1994. The model accurately predicted water-level fluctuations without adjustment. However, significant modifications to the eddy coefficient turbulence algorithm were required to simulate acceptable longitudinal currents. The thermal structure was accurately predicted in all three basins, even though this laterally averaged model cannot simulate Coriolis effects. We are currently extending the model's water-quality module to include the effects of nutrient loading and zebra mussels on the plankton.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3