Observation and Parameterization of Bottom Shear Stress and Sediment Resuspension in a Large Shallow Lake

Author:

Lin S.12ORCID,Boegman L.1ORCID,Jabbari A.3ORCID,Valipour R.2,Zhao Y.4

Affiliation:

1. Environmental Fluid Dynamics Laboratory Queen's University Kingston ON Canada

2. Canada Centre for Inland Waters Environment and Climate Change Canada Burlington ON Canada

3. Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada

4. Aquatic Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Lake Erie Fishery Station Wheatley ON Canada

Abstract

AbstractParameterizations for bottom shear stress are required to predict sediment resuspension from field observations and within numerical models that do not resolve flow within the viscous sublayer. This study assessed three observation‐based bottom shear stress (τb) parameterizations, including (a) the sum of surface wave stress and mean current (quadratic) stress (); (b) the log‐law (τb = τL); and (c) the turbulent kinetic energy (τb = τTKE); using 2 years of observations from a large shallow lake. For this system, the parameterization τb = τw + τc was sufficient to qualitatively predict resuspension, since bottom currents and surface wave orbitals were the two major processes found to resuspend bottom sediments. However, the τL and τTKE parameterizations also captured the development of a nepheloid layer within the hypolimnion associated with high‐frequency internal waves. Reynolds‐averaged Navier‐Stokes (RANS) equation models parameterize τb as the summation of modeled current‐induced bottom stress (τc,m) and modeled surface wave‐induced bottom stress (τw,m). The performance of different parameterizations for τw,m and τc,m in RANS models was assessed against the observations. The optimal parameterizations yielded root‐mean‐square errors of 0.031 and 0.025 Pa, respectively, when τw,m, and τc,m were set using a constant canonical drag coefficient. A RANS‐based τL parameterization was developed; however, the grid‐averaged modeled dissipation did not always match local observations, leading to O(10) errors in prediction of bottom stress. Turbulence‐based parameterizations should be further developed for application to flows with mean shear‐free boundary turbulence.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3