Correlation between physicochemical properties of superparamagnetic iron oxide nanoparticles and their reactivity with hydrogen peroxide

Author:

Javanbakht Taraneh1,Laurent Sophie23,Stanicki Dimitri2,Frenette Mathieu1

Affiliation:

1. Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2X 2J6, Canada.

2. Laboratory of NMR and Molecular Imaging, University of Mons, Mons B-7000, Belgium.

3. Center for Microscopy and Molecular Imaging (CMMI), Gosselies 6041, Belgium.

Abstract

The present study focuses on the effects of the physicochemical properties of superparamagnetic PEG-modified, positively charged, and negatively charged iron oxide nanoparticles (SPIONs) on their reactivity with hydrogen peroxide. Our hypothesis was that the reactivity of SPIONs in this reaction would depend on their surface properties. The comparative study of the nanoparticles with DLS and TEM revealed the average sizes of PEG-modified, positively charged, and negatively charged SPIONs. We observed that the reactivity of negatively charged SPIONs with hydrogen peroxide was less than that of positively charged SPIONs and that of these second nanoparticles was less than that of PEG-modified SPIONs. This difference in the reactivity of these SPIONs with hydrogen peroxide was attributed to the presence of carboxyl or amine groups on their surface. However, the values of the rate constants of the reactions of PEG-modified, positively charged, and negatively charged SPIONs with hydrogen peroxide showed that the reaction of negatively charged SPIONs with hydrogen peroxide was more rapid than that of PEG-modified SPIONs and the reaction of these second SPIONs with hydrogen peroxide was more rapid than that of positively charged SPIONs. The surface study of the SPIONs using XPS showed that the high-resolution spectra of these nanoparticles changed after reaction with hydrogen peroxide, which indicates their surface modifications. These investigations can help develop more appropriate nanoparticles with controlled physicochemical properties.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3