Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation

Author:

Kamau Njenga R.1,Petronek Michael S.1ORCID

Affiliation:

1. Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA

Abstract

Nanotechnology has provided considerable advancements in an array of disciplines. Recently, it has been shown that ferumoxytol, a magnetite (Fe3O4) nanoparticle, can be oxidized by ionizing radiation. Ferumoxytol nanoparticles have high stability, and thus can be hypothesized that they have dosimetric potential. In this study, it has been observed that xylenol orange, a colorimetric detector of Fe3+ used for conventional Fricke dosimetry, was not able to detect radiolytic changes in ferumoxtyol. Electron paramagnetic resonance (EPR) spectroscopy was more readily able to evaluate the oxidation of ferumoxytol. EPR spectroscopy revealed that oxidation of 500 nM ferumoxytol in H2O was linear up to 20 Gy. This concentration, however, was unable to estimate the delivered dose from a Small Animal Radiation Research Platform system, as a 6 Gy dose was estimated to be 1.37 Gy, which represents a 79.2% underestimation of the dose delivered. Thus, while the high stability of Fe3O4 nanoparticles is attractive for use in pre-clinical radiation dosimetry, further radiochemical evaluation may be required before considering them for this application.

Funder

NIH

Radiation Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3