SINGLET METHYLENE FROM THERMAL DECOMPOSITION OF DIAZOMETHANE. UNIMOLECULAR REACTIONS OF CHEMICALLY ACTIVATED CYCLOPROPANE AND DIMETHYLCYCLOPROPANE MOLECULES

Author:

Setser D. W.,Rabinovitch B. S.

Abstract

The thermal decomposition of diazomethane (DM) into singlet methylene radicals and nitrogen has been studied from 225° to 450° in 10:1 olefin–diazomethane mixtures. At 2.5 cm pressure, k = 1.2 × 1012 exp (−34,000/RT) sec−1. The methylene radicals have similar reactivity to methylene generated from photolytic decomposition of DM, as judged by the follow-up reactions with ethylene and cis-butene-2. The structural isomerization reactions of energized cyclopropane and the structural and geometric isomerization of 1,2-dimethyl-cyclopropane (DMC), formed from the addition of the thermally generated methylene to the olefins, were measured from 250° to 450° over a wide range of pressures. For comparison, cyclopropane formed from photolysis at 4358 Å and 25° of DM and ethylene was studied. As judged from comparison of the experimental isomerization rate constants, the energy of the cyclopropanes formed at 350° in the thermal DM system is about the same as for cyclopropanes formed by photolysis at 4358 Å of DM at 25°. The experimental rate constants obtained on the assumption of strong collisions are compared with calculated rate constants which are based on quantum statistical models for kE which fit literature data on conventional thermal isomerization of cyclopropane and DMC. From this comparison, the average energies of the formed molecules in the thermal systems are estimated to be between 107 and 115 kcal/mole, depending upon the temperature. Photolysis at 25° of the ketene–ethylene system (3200 Å) and of DM–ethylene system (4358 Å) give cyclopropane characterized as being at 103 and 111 kcal/mole respectively. These energies deduced from kinetic data are compared with available thermochemical quantities; the existing value of ΔHf0(CH2N2) is questioned. Further support for fast intramolecular relaxation of vibrational energy in DMC, relative to the relaxation process for reaction, is noted. Comparison of data in the literature on the ketene and DM photolytic systems strongly suggests that a larger fraction of the excess light energy resides with methylene from ketene (0.65–0.8) than with methylene from DM (0.3–0.5). Various approximations for the calculation of kE are examined and are compared with accurate quantum statistical evaluation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3