The Formation of Small Amounts of Cyclopropane during Pulsed Pyrolysis of C4–C5 Acyclic Alkanes in the Adiabatic Compression Reactor

Author:

Bilera Igor V.1ORCID

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (TIPS RAS), Leninsky Ave. 29, Moscow 119991, Russia

Abstract

During high-temperature pulse pyrolysis of acyclic butanes and pentanes under adiabatic compression conditions, cyclopropane, a stressed cyclic hydrocarbon, was found among the reaction products in small quantities for the first time. The analysis of the reaction products was performed by gas chromatography using three capillary columns of different polarity, selectivity and sufficient efficiency. The identification of reaction products, including cyclopropane, was performed using retention times of individual substances and model mixtures, as well as comparing chromatograms with reference chromatograms from the literature and the ScanView Application Database. It was shown that the chromatographic peak attributed to cyclopropane could not be a ghost peak. Additional confirmation of this conclusion was obtained in a series of experiments on the pyrolysis of n-butane at a reduced initial temperature of the adiabatic compression reactor (from 120 °C to 50 °C) and a modified mode of GC analysis. Cyclopropane yields as a function of maximum temperature have a bell-shaped asymmetric dependence. The maximum value of the yield of cyclopropane increases with the transition from normal alkanes to isoalkanes, and from pentanes to butanes; for n-pentane, 0.009 wt. %, and for isobutene, ≈0.017 wt. %. During the pulse pyrolysis of isobutane, n-butane, isopentane and n-pentane, cyclopropane is not a primary product. Further theoretical and experimental studies are needed to establish the mechanism of cyclopropane formation during pyrolysis of C4–C5 acyclic alkanes.

Funder

State Program for the TIPS RAS

Publisher

MDPI AG

Subject

General Medicine

Reference78 articles.

1. Ballistic piston for investigating gas phase reactions;Longwell;Ind. Eng. Chem.,1958

2. Adiabatic compression as a method for studying chemical processes under nonstationary conditions;Markevich;Kinet. Catal.,1962

3. Non-isothermal processes. Thermal cracking of methane;Volokhonovich;Dokl. USSR,1962

4. Determination of the rate constant for thermal cracking of methane by means of adiabatic compression and expansion;Kondratiev;Symp. Int. Combust.,1965

5. Kinetics of the cyclodimerization of tetrafluoroethylene and the thermal decomposition of octafluorocyclobutane;Buravtsev;Kinet. Catal.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3