Cellular fatty acid composition and exopolysaccharide contribute to bile tolerance in Lactobacillus brevis strains isolated from fermented Japanese pickles

Author:

Suzuki Shigenori1,Kimoto-Nira Hiromi2,Suganuma Hiroyuki1,Suzuki Chise2,Saito Tadao3,Yajima Nobuhiro1

Affiliation:

1. Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara, Tochigi 329-2762, Japan.

2. Functional Biomolecules Research Group, NARO Institute of Livestock and Grassland Science, Tsukuba, Ikenodai 2, Ibaraki 305-0901, Japan.

3. Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba, Sendai 981-8555, Japan.

Abstract

Bile tolerance is a fundamental ability of probiotic bacteria. We examined this property in 56 Lactobacillus brevis strains isolated from Japanese pickles and also evaluated cellular fatty acid composition and cell-bound exopolysaccharide (EPS-b) production. The bile tolerance of these strains was significantly lower in modified de Man – Rogosa – Sharpe (MRS) medium (without Tween 80 or sodium acetate) than in standard MRS medium. Aggregating strains showed significantly higher bile tolerance than nonaggregating strains in MRS medium, but there was no significant difference in the modified MRS media. The relative octadecenoic acid (C18:1) content of the 3 most tolerant aggregating and nonaggregating strains was significantly higher when bile was added to MRS. In MRS without Tween 80, the relative C18:1 content was only marginally affected by addition of bile. In MRS without sodium acetate, only the 3 most tolerant nonaggregating strains increased their relative C18:1 content in the presence of bile. Meanwhile, culture in MRS without sodium acetate reduced EPS-b production in aggregating strains. In conclusion, both EPS-b and cellular fatty acid composition play important roles in bile tolerance of pickle-derived L. brevis.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3