Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada

Author:

Burn C R

Abstract

Lakes, of average size 33 ha, occupy a quarter of the surface area of Richards Island, Northwest Territories. Most of the lakes have a central pool deeper than the thickness of winter ice, and many have prominent, shallow, littoral terraces. The relatively warm lake bottoms cause considerable disturbance to the surrounding continuous permafrost. Water and lake-bottom temperatures, the configuration of permafrost, and active-layer thickness were measured at a tundra lake between 1992 and 1997. The lake is oval, 1.6 km long, 800 m wide, and as deep as 13 m. Sandy terraces, covered by less than 1 m of water, extend over 100 m from the shore. The terraces are underlain by permafrost, which terminates almost vertically at their edge. The annual mean temperature measured at lake bottom in the central pool ranged between 1.5°C and 4.8°C, depending on depth, and between –0.2°C and –5°C on the terraces, due to differences in snow cover and proximity to the central pool. In consequence, the temperature of permafrost at 7 m depth in the terraces also varied, from –2°C near shore to –5°C in mid-terrace. The active layer in the terraces was uniformly 1.4 m deep. Geothermal modelling of talik configuration indicates that there is no permafrost beneath the central pool of the lake. The modelling indicates that, under equilibrium conditions, about one quarter of the lakes on Richards Island have taliks that penetrate permafrost, and at least 10–15% of the island is underlain by talik. Short-term climatic changes predicted for the region imply a small increase in summer lake-water temperature and an extension of the open-water season, accompanied by thicker snow cover in winter. Following such changes, with longer freeze-up and warmer terrace temperatures in winter, permafrost may not be sustainable in the lake terraces.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3