Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
-
Published:2023-12-13
Issue:12
Volume:17
Page:5283-5297
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Wesley Daniel, Dallimore Scott, MacLeod Roger, Sachs TorstenORCID, Risk David
Abstract
Abstract. The Mackenzie River delta is the second largest Arctic river delta in the world. Thin and destabilizing permafrost coupled with vast natural gas reserves at depth, high organic-content soils, and a high proportion of wetlands create a unique ecosystem conducive to high rates of methane (CH4) emission from biogenic and thermogenic sources. Hotspots are known to have a significant contribution to summertime CH4 emissions in the region. Still, little research has been done to determine how often geologic or biogenic CH4 contributes to hotspots in the Mackenzie River delta. In the present study, stable carbon isotope analysis was used to identify the source of CH4 at several aquatic and terrestrial sites thought to be hotspots of CH4 flux to the atmosphere. Walking transects and point samples of atmospheric CH4 and CO2 concentrations were measured. Source stable carbon isotope (δ13C-CH4) signatures were derived from keeling plots of point samples and ranged from −42 ‰ to −88 ‰ δ13C-CH4, identifying both biogenic and thermogenic sources. A CH4 source was determined for eight hotspots, two of which were thermogenic in origin (−42.5 ‰, −44.7 ‰), four of which were biogenic in origin (−71.9 ‰ to −88.3 ‰), and two of which may have been produced by the oxidation of biogenic CH4 (−53.0 ‰, −63.6 ‰), as evidenced by δ13C-CH4 signatures. This indicates that the largest hotspots of CH4 production in the Mackenzie River delta are caused by a variety of sources.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference82 articles.
1. Allan, W., Manning, M. R., Lassey, K. R., Lowe, D. C., and Gomez, A. J.: Modeling the variation of δ13C in atmospheric methane: Phase ellipses and the kinetic isotope effect, Global Biogeochem. Cy., 15, 467–481, https://doi.org/10.1029/2000GB001282, 2001. 2. Andersen, T., Scheeren, B., Peters, W., and Chen, H.: A UAV-based active AirCore system for measurements of greenhouse gases, Atmos. Meas. Tech., 11, 2683–2699, https://doi.org/10.5194/amt-11-2683-2018, 2018. 3. Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising plant-mediated methane emissions from arctic wetlands, Glob. Change Biol., 23, 1128–1139, https://doi.org/10.1111/gcb.13469, 2017. 4. Barbier, B. A., Dziduch, I., Liebner, S., Ganzert, L., Lantuit, H., Pollard, W., and Wagner, D.: Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes, FEMS Microbiol. Ecol., 82, 287–302, https://doi.org/10.1111/j.1574-6941.2012.01332.x, 2012. 5. Baskaran, L., Elder, C., Bloom, A. A., Ma, S., Thompson, D., and Miller, C. E.: Geomorphological patterns of remotely sensed methane hot spots in the Mackenzie Delta, Canada, Environ. Res. Lett., 17, 015009, https://doi.org/10.1088/1748-9326/ac41fb, 2022.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|