Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress

Author:

Hillman Angela R.1,Vince Rebecca V.1,Taylor Lee2,McNaughton Lars3,Mitchell Nigel4,Siegler Jason5

Affiliation:

1. Department of Sport, Health, and Exercise Science, The University of Hull, Hull, UK.

2. Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research (ISPAR). The University of Bedfordshire, Bedford, UK.

3. School of Health Sciences and Medicine, Bond University, Gold Coast, Australia.

4. Head of Nutrition British Cycling/Team Sky, Manchester, UK.

5. Sport and Exercise Science, School of Biomedical and Health Sciences, University of Western Sydney, Campbelltown Campus, Locked Bag 1797, Penrith NSW 2751, Australia.

Abstract

While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3