Reduced serum concentrations of reactive oxygen and nitrogen species following strenuous exercise in the heat are not associ-ated with an upregulation in serum antioxidative capacity

Author:

KELLER SebastianORCID,NOTBOHM Hannah L.ORCID,BLOCH WilhelmORCID,SCHUMANN MoritzORCID

Abstract

Introduction: Reactive oxygen and nitrogen species (RONS) are produced as a response to exercise and play a part in guiding the adaptive response to physical training. Exercise in the heat has been shown to further increase accumulation of RONS in systemic circulation; however, a high anti-oxidative response or heat acclimatization mechanisms could attenuate this response. In a previous study, we found reduced RONS concentrations in trained athletes following strenuous cycling in the heat. Therefore, this secondary analysis assessed whether these reduced RONS serum con-centrations are induced by an increased serum antioxidant capacity. Methods: Twelve male cyclists (V̇O2peak: 60 ± 4 ml ∙ kg-1 ∙ min-1) completed a 60-minute constant workload trial (55% peak power output, ambient temperature 30.4 ± 0.6°C) with and without ice vest in a randomized order. The core body temperature (Tcore) was measured by an ingestible capsule. Blood samples were col-lected before and after each trial to determine superoxide dismutase (SOD) and catalase (CAT) activity, total antioxidant capacity (TAC) and RONS. Due to the absence of between-group dif-ferences, data of both conditions were pooled. Results: Tcore statistically increased (p < 0.001) over the experimental trials (+6.0 ± 1.6%, effect size (ES) = 5.6). Concentrations of RONS (-17.2 ± 15.5%, p < 0.001, ES = 1.0) and TAC (-8.9 ± 22.9%, p = 0.04, ES = 0.7) statistically decreased, while the activity of CAT (+15.5 ± 84.0%, p = 0.90, ES = 0.04) and SOD (+9.2 ± 58.7%, p = 0.98, ES = 0.01) remained un-changed. Conclusions: Reduced serum RONS concentrations after strenuous cycling in the heat were not associated with upregulation of serum antioxidant capacity in trained athletes. The prooxidant-antioxidant balance may rather be regulated at a myocellular level and should be further assessed in future studies.

Publisher

Gdansk University of Physical Education and Sport

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3